
Chapter 6

Applications of Fuzzy Logic
Control

This chapter demonstrates the usefulness and capability of the fuzzy
logic control (FLC) methodology presented in Chapter 5. It is applied
to a variety of real life problems: investment advisory models, pest
management, inventory control models, problem analysis, and potential
problem analysis.1

6.1 Investment Advisory Models

Financial service organizations have developed various advisory invest-
ment models for clients based on age and risk tolerance. The objective is
to advice clients how to allocate portions of their investments across the
three main asset types: savings, income, and growth (asset allocation).

The concepts age and risk tolerance are measured on suitable scales.
Age is partitioned into three groups, for instance young (≤ 30 years),
middle age (between 30 and 60 years), and old (≥ 60 years). The risk
tolerance is partitioned on a psychometric scale from 0 to 100 into low
(≤ 30), moderate (between 30 and 70), and high (≥ 70). A questionary
filled by the client help financial experts to determine his/her risk tol-
erance group (low, moderate, or high). Knowing the client’s age and
risk tolerance group and using results from previous studies presented
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in tables and charts, the financial experts are in a position to advise a
client how to allocate money into savings, income, and growth.

A deficiency in this model is that a person 31 years old is middle age
as well as a person who is 45 years old. All ages in the interval [31, 59]
have the same status; they equally qualify to be middle age; there is no
gradation level of belonging to the interval. The same is valid for those
who are young and old. Similar difficulty arises with the notion of risk
tolerance.

Classical (crisp) models of this type can be improved by using FLC
methodology. This is illustrated in the following case study.

Case Study 20 Client Asset Allocation Model

The inputs (linguistic variables) in the fuzzy logic client asset alloca-
tion model are age and risk tolerance (risk). The risk can be estimated
as in Case Study 17, Parts 1–4, Chapter 5. It is important to observe
that here, in comparison to Case Study 17, there are three outputs
(linguistic variables), savings, income, and equity. Hence this is a two-
input–three-output model. Nevertheless the technique in Chapter 5 can
be applied but that requires the design of three decision tables (see
Notes, 2, Chapter 5).

The control objective is for any given pair (age, risk) which reflects
the state of a client to find how to allocate the asset to savings, income,
and growth.

Assume that the financial experts describe the two input and three
output variables by the terms of triangular and trapezoidal shape as
follows:

Age
4
= {Y(young),MI(middle age),OL(old)},

Risk
4
= {L(low),MO(moderate),H(high)},

Saving
4
= {L(low),M(medium),H(high)},

Income
4
= {L(low),M(medium),H(high)},

Growth
4
= {L(low),M(medium),H(high)}.

They are shown on Figs. 6.1–6.3.
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Fig. 6.3. Terms of the output variables savings, income, growth.

The universal sets (operating domains) of the input and output vari-
ables are U1 = {x|0 ≤ x ≤ 100} where the base variable x represents
years, U2 = {y|0 ≤ y ≤ 100} with base variable y measured on a pschy-
chometric scale, U3 = {zi|0 ≤ zi ≤ 100, i = 1, 2, 3} where the base
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variables zi take values on scale from 0 to 100.
The terms of linguistic variables risk, savings, income, and growth

are described by the same membership functions as the linguistic vari-
ables in Case Study 17 (see (5.3)). The variable age (Fig. 6.1) differs
slightly from the other variables; the membership functions of its terms
are

µY(x) =

{

1 for x ≤ 20,
45−x

25 for 20 ≤ x ≤ 45,

µMI(x) =

{

x−20
25 for 20 ≤ x ≤ 45,

70−x
25 for 45 ≤ x ≤ 70,

µOL(x) =

{

x−45
25 for 45 ≤ x ≤ 70,

1 for 70 ≤ x.

(6.1)

There are nine if . . . and . . . then rules like in Case Study 17 but
each inference rule produces three (not one) conclusions, one for savings,
one for income, and one for growth. Consequently the financial experts
have to design three decision tables. Assume that these are the tables
presented below.

Table 6.1. Decision table for the output savings.
Risk tolerance →

Age
↓

Low Moderate High

Young M L L

Middle M L L

Old H M M

Table 6.2. Decision table for the output income.
Risk tolerance →

Age
↓

Low Moderate High

Young M M L

Middle H H M

Old H H M
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Table 6.3. Decision table for the output growth.
Risk tolerance →

Age
↓

Low Moderate High

Young M H H

Middle L M H

Old L L M

For instance the first two if . . . then rules read:
If client’s age is young and client’s risk tolerance is low, then asset

allocation is: medium in savings, medium in income, medium in growth.
If client’s age is young and client’s risk tolerance is moderate, then

asset allocation is: low in savings, medium in income, high in growth.
Consider a client whose age is x0 = 25 and risk tolerance level is

y0 = 45. Matching the readings 25 and 45 against the appropriate
terms in Figs. 6.1 and 6.2 and using Eqs. (5.3) and (6.1) gives the fuzzy
reading inputs

µY(25) =
4

5
, µMI(25) =

1

5
, µL(45) =

1

6
, µMO(45) =

5

6
.

The strength of the rules calculated using (5.10) are:

α11 = µY(25) ∧ µL(45) = min(
4

5
,

1

6
) =

1

6
,

α12 = µY(25) ∧ µMO(45) = min(
4

5
,

5

6
) =

4

5
,

α21 = µMI(25) ∧ µL(45) = min(
1

5
,

1

6
) =

1

6
,

α22 = µMI(25) ∧ µMO(45) = min(
1

5
,

5

6
) =

1

5
.

The control outputs of the rules are presented in the active cells in
three decision tables (a particular case of Table 5.5).

Table 6.4. Control output savings.

Low Moderate

Young 1
6 ∧ µM(z1) 4

5 ∧ µL(z1)

Middle 1
6 ∧ µM(z1) 1

5 ∧ µL(z1)
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Table 6.5. Control output income.

Low Moderate

Young 1
6 ∧ µM(z2) 4

5 ∧ µM(z2)

Middle 1
6 ∧ µH(z2) 1

5 ∧ µH(z2)

Table 6.6. Control output growth.

Low Moderate

Young 1
6 ∧ µM(z3) 4

5 ∧ µH(z3)

Middle 1
6 ∧ µL(z3) 1

5 ∧ µM(z3)

The outputs in the four active cells in Tables 6.4–6.6 have to be
aggregated separately. The results (see Figs. 6.4–6.6) obtained by fol-
lowing Case Study 17 (Part 3) are:

µagg(z1) = max{min(
1

6
, µM(z1)), min(

4

5
, µL(z1))};

µagg(z2) = max{min(
4

5
, µM(z2)), min(

1

5
, µH(z2))};

µagg(z3) = max{min(
1

5
, µM(z3)), min(

4

5
, µH(z3)), min(

1

6
, µL(z3))}.

The aggregated outputs shown on Figs. 6.4–6.6 are defuzzified by
using HDM. The results are given in the same figures.
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Fig. 6.4. Aggregated output savings. Defuzzification.
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Fig. 6.6. Aggregated output growth. Defuzzification.

The projections of the flat segments can be easily found using their
height and the relevant equations of inclined segments indicated in the
figures. For instance, consider Fig. 6.4. Substituting 4

5 for µ in µ = 50−z1

30
gives the projection of P2 to be 26. Substituting 1

6 for µ in µ = z1−20
30 and

µ = 80−z1

30 gives the projections of Q1 and Q2 to be 25 and 75. Similarly
one can find that the projections of P1P2 and Q1Q2 in Fig. 6.5 are the
intervals [44,56] and [56, 100]. There are three flat segments P1P2, Q1Q2,
and R1R2 in Fig. 6.6. Their projections are [74,100], [26, 74], and [0,
45].

Then using the defuzzification formula (5.19) we find

ẑh1 =
4
5

0+26
2 + 1

6
25+75

2
4
5 + 1

6

= 19.38(saving),
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ẑh2 =
4
5

44+56
2 + 1

5
56+100

2
4
5 + 1

5

= 55.60(income),

ẑh3 =
4
5

74+100
2 + 1

5
26+74

2 + 1
6

0+45
2

4
5 + 1

5 + 1
6

= 71.44(growth).

The sum ẑh1 + ẑh2 + ẑh3 = 146.42 represents the total asset (100%).
To convert each ẑhi, i = 1, 2, 3, into percentage we use the formula

100ẑhi

ẑh1 + ẑh2 + ẑh3
=

100

146.42
ẑhi = 0.68ẑhi, i = 1, 2, 3.

This gives the following asset allocation of the client whose age is 25
and risk tolerance 45:

Savings : 0.68(19.38)% = 13.18%,

Income : 0.68(55.60)% = 37.81%,

Growth : 0.68(71.44)% = 48.58%.

Rounding off gives savings 13%, income 38%, and growth 49%.
These numbers can be used by financial experts as a base for making

an asset allocation recommendation suitable for a person whose age is
25 and risk tolerance is 45 (on a scale from 0 to 100). 2

6.2 Fuzzy Logic Control for Pest Management

There is no definite knowledge in science to tell us how to model in
a unique way processes in nature, and in particular population behav-
ior. Ecological and bio-economical systems involve various types of un-
certainties and vague phenomena which makes their study extremely
complicated. The better understanding of these complex systems will
create conditions for better and more rational resource management and
efficient control policies for restriction of undesirable growth.

In this section the fuzzy logic control (FLC) methodology is applied
to population dynamics, in particular to a predator–prey system. The
same methodology can be applied with some modifications to other
types of interactions, for instance competition between two populations.
Also it can be applied to more than two interacting populations.
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Consider the prey to be a pest which serves as a host for the preda-
tor, a parasite. The pest population has size (density) x and the parasite
population has size (density) y. It is assumed that the system is ob-
servable, hence the population sizes can be counted or estimated.

The predator–prey interaction takes place in a fuzzy environment
due to climate conditions, diseases, harvesting, migration, interaction
with other species not accounted in the system, etc. Age, sex, and
genotype differences are presented in the system, and the changes in
density of the populations are not only instantaneous but may depend
on the past history (time-lag).

No mathematical model can describe satisfactory such a complex
system. The theoretical modelers who want to derive behavior rules
of general nature about the interacting populations are bound to make
simplifying assumptions. They may present interesting results and ele-
gant theorems. Unfortunately often the relation between theorems and
reality is not close. Hence it is natural to look for alternative method-
ologies.

The control objective of the resource management is to design a
growth restriction policy for the pest population (eventually extinction)
by using as a control output the change (increase) in the size of the
parasite; in other words to release (stock) predators in order to control
pests.

We will illustrate the FLC on a case study.

Case Study 21 Control of a Parasite–Pest System

The number of both pests and parasites in a certain environment is
assumed to vary between 0 and 16,000.

The following selections are made: inputs—pest population size and
parasite population size; output—increase of size of parasites. They are
modeled by sets of the type (5.1) each containing six terms of triangular
shape. The labels of the terms are indicated in Figs. 6.7–6.9. The base
variables x and y for the inputs and the base variable 4y for the output
represent numbers measuring the population sizes x and y, and the
increase 4y of the size of parasites in thousands. Equations of the
segments which will be used are given in Figs. 6.7–6.8.



166 Chapter 6. Applications of Fuzzy Logic Control

µ

1

0 4 8 11 12 16

S MS M ML L

small

medium
small

medium
large large

medium

=0x

µ=

µ=
4

4

x 10
3

12− x

x −8

3/4

1/4

Fig. 6.7. Terms of the input pest population size.

µ

1

0

S

small

y 10
3

LMLMMS

largemedium
large

mediummedium
small

µ=

4 8 1612=2.50y

4

4
µ=4− y

y
5/8

3/8

Fig. 6.8. Terms of the input parasite population size.

1

0 2 4 6 8

O S M L VL

∆ y 10
3

zero small medium large very large

Fig. 6.9. Terms of the output increase of parasite population size.



6.2. Fuzzy Logic Control for Pest Management 167

The selected rules by the resource management are presented in the
decision Table 6.7.

Table 6.7. If . . . and . . . then rules for parasite–pest system.
Parasite population size →

Pest
population

size
↓

y S MS M ML L

x

S 0 0 0 0 0

MS S 0 0 0 0

M M
√

S
√

0 0 0

ML L
√

M
√

S 0 0

L VL L M S 0

There are 25 rules. We present only those which will be used later.
(a) If pest population is medium and parasite population is small

then exert medium increase of parasite population size.
(b) If pest population is medium and parasite population is medium

small then exert small increase of parasite population.
(c) If pest population is medium large and parasite population is

small then exert large increase of parasite population size.
(d) If pest population is medium large and parasite population is

medium small then exert medium increase of parasite population size.
Assume that at a certain time t0 the number of pest population is

estimated by resource management experts to be 11,000 or x0 = 11
in thousands and the number of parasite population is estimated to be
2,500 or y0 = 2.5 in thousands. The matching against appropriate terms
of the input variables is shown in Figs. 6.7 and 6.8.

Using the membership function of the triangular numbers in Figs. 6.7
and 6.8 we calculate the fuzzy readings as follows. The value x0 = 11
is consequently substituted for x into equations µ = 12−x

4 and µ = x−8
4

which gives 1
4 and 3

4 . Similarly y0 = 2.5 substituted for y into equations

µ = 4−y
4 and µ = y

4 produces 3
8 and 5

8 , correspondingly. Hence

µM(x0) =
1

4
, µML(x0) =

3

4
, µS(y0) =

3

8
, µMS(y0) =

5

8
.
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Then the induced decision Table 5.3 reduces to the marked cells in
Table 6.7 (the rest of the cells are nonactive).

The four rules to be fired are (a)–(d) induced by the marked cells in
Table 6.7.

To find the levels of firing (strength of the rules) according to Sec-
tion 5.5 we use formulas (5.10) which give

α1 = µM(x0) ∧ µS(y0) = min(
1

4
,

3

8
) =

1

4
,

α2 = µM(x0) ∧ µMS(y0) = min(
1

4
,

5

8
) =

1

4
,

α3 = µML(x0) ∧ µS(y0) = min(
3

4
,

3

8
) =

3

8
,

α4 = µML(x0) ∧ µMS(y0) = min(
3

4
,

5

8
) =

5

8
.

The control outputs of the rules (see (5.11)) are

(a) α1 ∧ µM(4y) = min(
1

4
, µM(4y)),

(b) α2 ∧ µS(4y) = min(
1

4
, µS(4y)),

(c) α3 ∧ µL(4y) = min(
3

8
, µL(4y)),

(d) α4 ∧ µM(4y) = min(
5

8
, µM(4y)).

Noticing that the output of rule (a) is included into rule (d), the
aggregation of the control outputs of rules (b)–(d) according to formula
(5.12) produces

µagg(4y) = max{min(
1

4
, µS(4y), min(

3

8
, µL(4y)), min(

5

8
, µM(4y))}.

This is a union of the three triangular fuzzy numbers S, M, L,
presented in Fig. 6.9, sliced correspondingly with the straight lines µ =
1
4 , µ = 3

8 , µ = 5
8 , and placed on top one other. The result is shown in

Fig. 6.10 (the thick segments).
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Fig. 6.10. Aggregated output for the parasite–pest system.

The mean of maximum method (MMM) is very suitable to be ap-
plied for defuzzification since precision is not important in the complex
parasite–pest system under consideration. The crisp output is 4ŷm = 4
(M is a central triangular fuzzy number, Section 1.5.).

Hence the control action which the management should undertake
is to increase the parasite population by 4 × 103 = 4000 members.

The MMM reflects only the firing of rule (d). However, the neglected
rules (b) and (c) produce clipped triangulars on both sides of M which
almost balance each another. Actually the clipped L (level of firing 3

8 )
is a little bit stronger that the clipped S (level of firing 1

4), hence MMM
in this case gives a slightly conservative value which is justified from the
biological point of view.

In order to make comparison, let us apply the HDM. Note that the
midpoints of the flat segments of the clipped triangular numbers S, M,
and L are 2, 4, and 6, correspondingly. Then the extended formula
(5.19) (Section 5.6) gives 4ŷh = 4.2, which is close to 4ŷm = 4.

Later at a properly selected time t1, the numbers of the prey and
predator populations are to be counted or estimated. Assume they are
x1 and y1 correspondingly. Then the whole process is to be repeated
using x1 for x0 and y1 for y0. The new calculated crisp values 4ŷm1 will
indicate what control action is needed (increase of parasite population
size) to keep the pest population below 16 × 103. Again and again the
same process is to be repeated.

2
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6.3 Inventory Control Models

Storage cost is a major concern of production. Classical inventory mod-
els have been constructed to deal with minimizing storage cost. Their
aim is to maintain enough quantities of needed parts to produce a prod-
uct without incurring excessive storage cost. The product is supposed
to satisfy the demand on the market. The basic inventory management
problem is to decide when new parts should be ordered (order point) and
in what quantities to minimize the storage cost. This is a complicated
optimization problem (see for instance Fogarty and Hoffmann (1983)).
Unfortunately the existing classical mathematical methods may produce
a solution quite different from the real situation.

A good alternative to those methods is the FLC methodology. Its
purpose is not to minimize cost directly but to maintain a proper in-
ventory level reflecting the demand at a given time. The experience
and knowledge of the managers in charge is of great importance in con-
structing an inventory FLC model.

The fuzzy inventory models discussed here have two input variables:
demand value D for a product and quantity-on-hand parts (in stock)
QOH needed to build the product (see Cox (1995)). There is one output
variable—the inventory action IA which suggests reordering of parts,
reducing the number of the already existing, or no action at that time.

The reduction of number of parts can be done in various ways de-
pending on a specific situation, for instance returning parts to supplier
at some nominal loss, sending parts to a sister company, etc. If this
options are not available or the management decides not to use them,
then the parts can be kept with anticipation demand to improve.

Inventory model 1—parts reduction possible

Following Cox (1995) we model the inputs by sets containing five terms
and the output by a set containing seven terms (while Cox uses bell–
shaped fuzzy numbers, we employ triangular and trapezoidal numbers):

Demand(D)
4
= {F,D,S, I,R},

where F
4
= falling, D

4
= decreased, S

4
= steady, I

4
= increased, R

4
=

rising;
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Quantity-on-hand(QOH)
4
= {M,L,A,H,E},

where M
4
= minimal, L

4
= low, A

4
= adequate, H

4
= high, E

4
=

excessive;

Inventory action ( IA )
4
= {NL,NM,NS,O,PS,PM,PL},

where NL
4
= negative large, NM

4
= negative moderate, NS

4
=

negative small, O
4
= zero, PS

4
= positive small, PM

4
= positive moderate,

PL
4
= positive large. The terms of Inventory action mean corresponding

change to quantity-on-hand; negative stands for reduction of number of
parts, positive for ordering, and zero for no action.

According to Section 5.3 the number of rules to be design is 25.
They must have as a conclusion the terms of the output. Assume the
management constructs the decision Table 6.8.

Table 6.8. If . . . and . . . then rules for the inventory control model.
Quantity–on–hand →

Demand
↓

Minimal Low Adequate High Excessive
M L A H E

Falling F O O NS NM NL

Decreased D PS O NS NM NM

Steady S PM PS O NS NM

Increased I PM PM PS O O

Rising R PL PL PM PS O

The rules leading to inventory action are listed below.
Rule 1: If D is falling and QOH is minimal, then do nothing;
Rule 2: If D is falling and QOH is low, then do nothing;
Rule 3: If D is falling and QOH is adequate, then reduce action is
negative small;
Rule 4: If D is falling and QOH is high, then reduce action is negative
moderate;
Rule 5: If D is falling and QOH is excessive, then reduce action is
negative large;
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Rule 6: If D is decreased and QOH is minimal, then order action is
positive small;
Rule 7: If D is decreased and QOH is low, then do nothing;
Rule 8: If D is decreased and QOH is adequate, then reduce action is
negative small;
Rule 9: If D is decreased and QOH is high, then reduce action is negative
moderate;
Rule 10: If D is decreased and QOH is excessive, then reduce action is
negative large;
Rule 11: If D is steady and QOH is minimal, then order action is
positive moderate;
Rule 12: If D is steady and QOH is low, then order action is positive
small;
Rule 13: If D is steady and QOH is adequate, then do nothing;
Rule 14: If D is steady and QOH is high, then reduce action is negative
small;
Rule 15: If D is steady and QOH is excessive, then reduce action is
negative moderate;
Rule 16: If D is increased and QOH is minimal, then order action is
positive moderate;
Rule 17: If D is increased and QOH is low, then order action is positive
moderate;
Rule 18: If D is increased and QOH is adequate, then order action is
positive small;
Rule 19: If D is increased and QOH is high, then do nothing;
Rule 20: If D is increased and QOH is excessive, then do nothing;
Rule 21: If D is rising and QOH is minimal, then order action is positive
large;
Rule 22: If D is rising and QOH is low, then order action is positive
large;
Rule 23: If D is rising and QOH is adequate, then order action is
positive moderate;
Rule 24: If D is rising and QOH is high, then order action is positive
small;
Rule 25: If D is rising and QOH is excessive, then do nothing.
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Inventory model 2—parts reduction not possible

The input variables D and QOH are the same introduced in Inventory
model 1. Since now reduce action is not available, the output inventory
action is partition into four terms instead of seven,

Inventory action (IA)
4
= {O,PS,PM,PL},

where O,PS,PM, and PL have the same meaning as in Inventory
model 1.

The decision table is Table 6.8 with terms O above the major diag-
onal.

Table 6.9. If . . . and . . . then rules for Inventory model 2.
Quantity-on-hand →

Demand
↓

M L A H E

F O O O O O

D PS O O O O

S PM PS O O O

I PM PM PS O O

R PL PL PM PS O

The rules producing the inventory action (the if . . . and . . . then
rules) can be obtained from those for Inventory model 1 if in rules 3, 4,
5, 8, 9, 10, 14, and 15 the then part (conclusion) is substituted with do
nothing; the rest of the rules remain unchanged.

The control actions discussed in this section are of qualitative nature.
In order to produce a crisp action initial data (readings) are needed.
This is illustrated in the following case study.

Case Study 22 An Inventory Model with Order and Reduction Control
Action.

Assume that the input demand (D) is defined on the interval
[−50, 50] (universal set) (Fig. 6.11) and the input quantity-on-hand
(QOH) is defined on the interval [100, 200] (Fig. 6.12).

While the scale x (base variable) on which the terms of demand are
defined is predetermined, the scale y depends on the type and number
of QOH parts in a real situation.
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Fig. 6.12. Terms of the input variable quantity-on-hands (QOH).

Assume also that the output inventory action (IA) is defined on the
interval [−50, 50] (Fig. 6.13). It is a percentage scale z (base variable)
whose selection depends on an estimate of the maximum number (in
percentage) by which the number of inventory parts could be increased
or decreased.

The terms of the inputs and the output are triangular and parts of
trapezoidal numbers whose membership functions can be easily written
(see Sections 1.5 and 1.6). Those to be used later (depending on the
readings) are given in the figures.
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Fig. 6.13. Terms of the output variable inventory action (IA).

Assume that at time t0 the demand (it has to be estimated using
for instance the technique in Chapter 3, Section 4, or by other means)
is x0 = 32 and quantity-on-hand is y0 = 165. These readings have
to be matched against appropriate terms in Fig. 6.11 and Fig. 6.12.
Substituting x0 into µ = 40−x

20 and µ = x−20
20 , and y0 into µ = 170−y

20 and

µ = y−150
20 gives

µI(32) =
2

5
, µR(32) =

3

5
, µA(165) =

1

4
, µH(165) =

3

4
.

The induced decision Table 5.3 reduces to Table 6.10 where only the
active cells are shown.

Table 6.10. Induce decision table for the inventory model.

µA(165) = 1
4 µH(165) = 3

4

µI(32) = 2
5 µPS(z) µO(z)

µR(32) = 3
5 µPM(z) µPS(z)

The four rules to be fired are 18, 19, 23, 24.
The strengths of these rules are (see (5.10)):

α1 = µI(32) ∧ µA(165) = min(
2

5
,

1

4
) =

1

4
,

α2 = µI(32) ∧ µH(165) = min(
2

5
,

3

4
) =

2

5
,
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α3 = µR(32) ∧ µA(165) = min(
3

5
,

1

4
) =

1

4
,

α4 = µR(32) ∧ µH(165) = min(
3

5
,

3

4
) =

3

5
.

The control outputs (CO) of the rules are (see (5.11)):

CO of rule 18: α1 ∧ µPS(z) = min( 1
4 , µPS(z)),

CO of rule 19: α2 ∧ µO(z) = min( 2
5 , µO(z)),

CO of rule 23: α3 ∧ µPM(z) = min( 1
4 , µPM(z)),

CO of rule 24: α4 ∧ µPS(z) = min( 3
5 , µPS(z)).

The output of the rule 18 is included into that of rule 24. Hence the
aggregation of the control outputs (see (5.12)) gives (Fig. 6.14):

µagg(z) = max{min(
2

5
, µO(z)), min(

1

4
, µPM(z)), min(

3

5
, µPS(z))}.

µ

1

0

O PS PM

15 30 45 z

3/5

1/4

2/5

P
P1

2

−15

Fig. 6.14. Aggregated output for the inventory model. Defuzzification.

Similar to Case Study 21 (see Fig. 6.10), we can use for defuzzifi-
cation MMM which gives ẑm = 15 (PS is triangular number in central
form). Since rule 19 has level of firing 2

5 which is stronger than 1
4 , that

of the rule 23, ẑm = 15 is a little bit optimistic value meaning that
ordering of parts is not on the conservative side. Of course the HDM,
which will produce a smaller value than 15, could be easily applied (see
Case Studies 20 and 21).
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Now we have to translate ẑm = 15 (in percentage) into a corre-
sponding inventory action. If the QOH at the time t0 of the study
(x0 = 32, y0 = 165) denoted (QOH)current is considered as unit 1 (or
100%), then it has to be increased by 15 %. This gives 1 + 15

100 = 1.15
called adjustment factor (AF). The control action leads to a new
QOH denoted (QOH)new which is (QOH)current multiplied by (AF),
i.e. 165 × 1.15 = 188.75 ≈ 199. The difference 199 − 165 = 34 suggests
that 34 new parts are to be ordered.

The following general formula can be used:

(QOH)new = (QOH)current × AF,

where

AF = 1 +
ẑ

100
;

ẑ is a defuzzified value obtained by one of the available methods.
If ẑ > 0 like in the case discussed, the control action is ordering of

new parts; if ẑ < 0, the control action is reduction.
2

6.4 Problem Analysis

Problem analysis or deviation performance analysis deals with problems
created when there are undesirable deviations from some expected stan-
dard performance. The cause of such deviations is an unplanned and
unanticipated change (see Kepner and Tregoe (1965) and Simon (1960)).

The manager or a managerial body in charge of certain areas of op-
eration must recognize an undesirable deviation if such has developed or
occurred. Also several deviations may occur concurrently. The manager
must find what is wrong and what is the cause for it in order to do the
necessary correction. A good knowledge of the expected performance
standards in each area of operation will help the manager to identify de-
viations from such performance. Some deviations are permissible within
certain limits established by the manager or a governing body. They
have to be watched; no correction at that time is needed.

Once the manager has made sure that the deviations are identified,
they have to be ranked according to their importance.
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Kepner and Tregoe (1965) who contributed to classical problem anal-
ysis suggest that several important questions have to be addressed by
the manager:

(1) How urgent is the deviation?
(2) How serious is the deviation?
(3) What is the deviation growth potential?
(4) What is the priority of the deviation?
The answer to these questions requires experience and skills from the

manager. Valuable instructions and examples are provided by Kepner
and Tregoe (1965).

Our approach in dealing with the above questions is different. We
use the tools of fuzzy logic control (FLC) to quantify more realistically
the classical problem analysis and arrive to conclusion.

Urgent, serious, and growth potential are considered here as linguis-
tic variables; they are the inputs. The output variable is priority of
deviation. Since high precision is not needed, we model each variable
by three terms (using triangular and trapezoidal numbers):

Urgent(U )
4
= {N,S,V},

Serious(S )
4
= {N,S,V},

Growth potential(GP )
4
= {L,M,H},

Priority of deviation(POD)
4
= {L,M,H},

where N
4
= not, S

4
= somewhat, V

4
= very, H

4
= high, L

4
= low,

M
4
= medium.
Since we are dealing with three inputs according to Chapter 5

(Notes,2) we have to design 3 × 3 × 3 = 27 rules of the type if . . .
and . . . and . . . then. For instance, if deviation (D) is somewhat urgent
and D is very serious and D growth potential is medium then priority
of deviation is high.

From these rules eight have to be fired hence the aggregated conclu-
sion will consists of eighth (or less) superimposed clipped fuzzy numbers.
This can be done but is complicated.

In order to simplify the control procedure we consider as in Chap-
ter 5, Section 5.9, the input variables to be independent of each other
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meaning that the rules will be of the type if . . . then without using and
(precondition) part. This approach reduces the number of rules from
27 to 9. They are listed below in three groups concerning urgent (U),
serious (S), and growth potential (GP); in each group there is one input
and one output.

Rule 1: If D is NU then POD is L,
Rule 2: If D is SU then POD is M,
Rule 3: If D is VU then POD is H,











(6.2)

Rule 4: If D is NS then POD is L,
Rule 5: If D is SS then POD is M,
Rule 6: If D is VS then POD is H,











(6.3)

Rule 7: If D is with LGP then POD is L,
Rule 8: If D is with MGP then POD is M,
Rule 9: If D is with HGP then POD is H.











(6.4)

For instance, the first rule reads: if deviation is not urgent then
priority of deviation is low.

The FLC is applied separately for each group of rules and the ob-
tained conclusions are aggregated. In practice this means that we have
to apply the simplified procedure in Section 5.9 three times for one-
input–one-output control model and then to aggregate the three out-
puts.

Details are presented in the following case study.

Case Study 23 Fuzzy Logic Control for Problem Analysis

Let us assume that the three input variables and the output variable
are defined on a psychometric scale [0, 100] as shown in Figs. 6.15–6.18.

Assume that the manager detects a deviation performance and gives
the assessments (readings) x0 = 40, y0 = 20, z0 = 75 of the base vari-
ables x, y, and z measuring how urgent is the deviation, how serious is
it, and what is its growth potential on the scale [0, 100].

The fuzzy reading inputs generated by x0, y0, and z0 are shown in
Figs. 6.15–6.17. They are actually the strength of the rules (the levels
of firing).
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Fig. 6.15. Terms of the input variable urgent.

0 100

µ
1

N S V

10 50 90

1/4

3/4

20

y

µ=50−y
40

µ=
40

y−10

Fig. 6.16. Terms of the input variable serious.
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Fig. 6.17. Terms of the output variable growth potential.

Now the technique in Case Study 18 has to be applied three times
since the three inputs U, S, and GP are considered as independent which
is reflected in the three groups of rules (6.1)–(6.3). For each group the
FLC requires that two rules are to be fired at specified levels. When
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combined they produce three independent control outputs µx(v), µy(v),
and µz(v) whose aggregation will give the membership function µagg(v)
of the final conclusion concerning priority of deviation (POD).

0 100

µ
1

10 50 90

L M H

v

Fig. 6.18. Terms of the output variable priority of deviation.

The procedure is performed in Fig. 6.19. Only the relevant terms
are presented.
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Fig. 6.19. Firing of rules for three independent inputs.



182 Chapter 6. Applications of Fuzzy Logic Control

The aggregation of µx(v), µy(v), and µz(v) using operation max gives
the output

µagg(v) = max(µx(v), µy(v), µz(v))

geometrically presented in Fig. 6.20. It is obtained by superimposing
µx(v), µy(v), and µz(v) a top one other (see Section 5.5).

0 100

µ
1

10 50 90

5/8

L M H

7520 40 60

P QP Q
R R

1 2 1 2

1 2
3/4

v

Fig. 6.20. Aggregation of the independent inputs. Defuzzification.

To defuzzify µagg(v) we use the HDM. Since the projections of the
flat segments P1P2, Q1Q2, and R1R2 are [0,20], [40, 60], and [75, 100],
the extended formula (5.19) gives

v̂h =
3
4

0+20
2 + 3

4
40+60

2 + 5
8

75+100
2

3
4 + 3

4 + 5
8

= 46.91 ≈ 47.

The interpretation is that the priority of deviation is almost medium;
on a scale from 0 to 100 it is ranked 47. The manager will act accord-
ingly.

2

6.5 Potential Problem Analysis

This section is closely connected to Section 6.4—Problem Analysis.
The aim of potential problem analysis is to prevent occurrence of

possible problems (in the sense of undesirable deviations from certain ex-
pected performance). The bottom line is to minimize the consequences
of potential problems if they do occur (see Kepner and Tregoe (1965)).
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Here we use FLC methodology to model some aspects of classical
problem analysis considered by Kepner and Tregoe (1965).2

A manager in charge of a project may find several potential problems
with various degrees of risk for the project. The manager has to con-
centrate to those that are more dangerous on the project. The following
questions are important and deserve consideration:

(1) How serious will be for the project if a potential problem (devia-
tion) occurs?

(2) How possible is that a potential problem might occur?

(3) In what degree (magnitude) a potential problem might happen?

(4) Which are the potential problems that require attention or re-
sponse?

Serious (concerning consequence of occurence of potential problem),
possible (concerning occurence of potential problem), and degree (ex-
tent, magnitude, concerning partial occurence of a potential problem)
are inputs; response is the output. They are described by fuzzy sets
containing three terms.

Serious (S)
4
= {A,HU,F},

Possible (P)
4
= {N,S,V},

Degree (D)
4
= {L,M,H},

Response (R)
4
= {I,WP,MP},

where A
4
= annoying, HU

4
= hurt, F

4
= fatal, N

4
= not, S

4
=

somewhat, V
4
= very, L

4
= low, M

4
= medium, H

4
= high, I

4
= ignore,

WP
4
= want to prevent (or minimize effects), MP

4
= must prevent.

Similarly to Section 6.4 (Problem Analysis) we can apply the sim-
plified FLC technique considering the input variables as independent.
Then the rules are reduced to 9; they are of the type (6.2)–(6.4). De-
noting potential problem or potential deviation by PD, the selected rules
are:
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Rule 1: If PD is AS then R is I,
Rule 2: If PD is HUS then R is WP,
Rule 3: If PD is FS then R is MP,











(6.5)

Rule 4: If PD is NP then R is I,
Rule 5: If PD is SP then R is WP,
Rule 6: If PD is VP then R is MP,











(6.6)

Rule 7: If PD is LD then R is I,
Rule 8: If PD is MD then R is WP,
Rule 9: If PD is HD then R is MP.











(6.7)

The first rule for instance reads: if potential deviation is annoyingly
serious then response is ignore.

Case Study 24 Fuzzy Logic Control for Potential Problem Analysis

We will specify the inputs S, P,D, and the output R introduced
above similarly to the variables in Case Study 23. However to avoid
repetition we can define the variables under consideration using those
in Case Study 23 as follows.

Urgent (U) (Fig. 6.15) is substituted by Serious (S),

Serious (S) (Fig. 6.16) is substituted by Possible (P),

Growth potential (GP) (Fig. 6.17) is substituted by Degree (D),

Priority of deviation (POD) (Fig. 6.18) is substituted by Response (R).

Also the terms of the variables U, S,GP , and POD in Case Study
23 are substituted by the terms of S, P,D, and R in this case study,
correspondingly.

Then the rules (6.2)–(6.4) are substituted by the rules (6.5)–(6.7),
respectively.

To make a full use of the calculations in Case Study 23 here we as-
sume the same readings: x0 = 40, y0 = 20, z0 = 75 on a scale [0,100] but
now the base variables have different meaning; x stands for seriousness,
y for possibility, and z for degree.

The firing of the rules (Fig. 6.19), the aggregation (Fig. 6.20), and
the defuzzified value v̂h ≈ 47 remain valid.
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The manager, in response to the potential deviation evaluated to be
47 on a scale from 0 to 100, wants to prevent it and he/she will work to
do this. The project will be hurt in case of no action.

2

6.6 Notes

1. Graham and Jones (1988) outlined financial applications where
fuzzy methods were employed (some concern if . . . then rules).
They listed various computer products, suppliers, and areas of use.
Cox’s book (1995) contains interesting applications in business and
finance; it includes two discs and provides the C++ code listings
for programs, demonstrations, and algorithms used in the book.

2. Kepner and Tregoe wrote in 1965 (it is still of interest today):

“The systematic analysis of potential problem is still rare. Yet
it is not difficult to show that skill in analyzing and preventing
or minimizing potential problems can provide the most returns
for the effort and time expended by a manager. The point is so
well-known that it has become an axiom: an ounce of prevention
is worth a pound of cure. So few managers apply the axiom, how-
ever, that it is reasonable to assume there are major obstacles
preventing them from doing so. One obstacle is that managers
are generally far more concerned with correcting today’s prob-
lems than with preventing or minimizing tomorrow’s. This is not
surprising, of course, since the major rewards in money and pro-
motion so often go to those who show the best records of solving
current problems in management, and there is rarely a direct re-
ward for those whose foresight keeps problems from occurring.
There are also other reasons why so few managers analyze and
deal with potential problems. There is the common tendency to
overlook the critical consequences of an action. Such consequences
may be missed because they seem too disagreeable or unpalatable
to face, or the consequence may be literally invisible.”


